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ABSTRACT

A'self consistent field type perturbation theory is developed to treat the
dynamics of stationary and homogeneous turbulence. The method consists in ex-
pancing the full probability distribution function about the product of exact
single-mode distributions. The theory is used in second order to find expres-
sions for the turbulent energy spectrum and associated response frequencies.
The results for the energy spectrum are identical to a simplified form of the
direct interaction approximation of Kraichnaﬁ, and closeiy vresemble the results
of the generalized random phase approximation of Edwards. Tine relation of <ne

present method to both the above approaches is discussed,
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1. INTRODUCTION

The statistical theory of turbulence is usually treated in terms of the
heirarchy of moment equations formed by multiplying the equation qf motion by
products of the vélocity field and averaging tﬁe results over an ensemble of
realizable flows. The equations for moments of different order are couplad
together because of the nonlinearity in the equations of motion, and to obtain
a closed set of equations it is necessary to make some statistical or dynamical
assumption about the flow. An alternative approach, and one which has s0 {ar
not been much used, is to study directly the full probability-distribution of
the system. The probability-distribution function satisfies a linear equation,

and the closure problem met with in the moment method is not explicitly en-

countered.

The approach described in the present paper is to reduce the equation for
the full probability distribution to equationsfor single mode probability dis-
tributions by means of a self-consistent-field type calculation of the inter-
action amongst the modes, The procedure is similar to the Hartree self-consistent
field calculation in quantum mechanics except that in the turbulence problem
the analog of the single mode potential vanishes, so that the self-consistency
requirement is of higher order. The perturbation expansion derived here is one
in whicn the zeroth order term is a product of the exact single-mode distribu-
tion functions. Higher order terms contain the multi-mode‘cofrelations indu?ed
by the turbulent ihtefaétions, but contain explicitly no terms contributing go

the product of single-mode distributions.



The. wmethod -presented nere is related to ovoth the direct-intveraciion
epproximation of Kraicbnﬂuxi;}f and the generalizedégandom-phase
approximation of Edwar®§§- Thbe basic 1ngr;dients of the directv interaciion
appfoximation are the wave number spectrum of Xipetic energy/and tae time-
correlation and response functions of the Fourier modes. The self-con-
sistent field equations obtained here are identical with a simplified Jorm
of the direct interaction equations in which the time~correlation axda
respouse functions are approxirated by exponential time dependence,and
the response and correlation times for a glven Fourier mode are assumed
0 e equal. The final equations then involve the energy-spectrum and ita
response time of the Fourier modes. Edwards proposes an expansion of
the provability distribution based on a Foxxker-Planck type caaracterizatica
of the turbulence dynamics. The final equations also involve only tke
energy-spectrum and response times. Taey differ sligatly {ram izose of

tde present theory. Tne relationship between the preseant theory and thav

of Edwards 1is discussed in Section 1V, .



I1. BASIC EQUATIONS

A. The Equations of Motion for Isotropic Turbulence

The Navier-Stokes equations for an incompressible viscous fluid are

©
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in {1a), v is the kinematic viscosity, v is the velocity field, p is the
A

{constant) fluid density, p is the pressure field, and F is a possible solenoidal

external driving force. We shall be interested in the stochastic pruperties of

{7a). in the limit of an infinite medium, such that the pressure field becomes

constant at spacial infinity.

It is convenient to rewrite (i1a) in the following way. First introduce
g )

the Fourier transform of v (r, t) defined by

Then let Xn(t) (n=1, 2, ...) denote the real and imaginary part of all the vik,t).

The index n labels both the wave number k, and the vector indices of v in any

convenient fashion. The Xn(t)'s satisfy the following equation :
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MK = 3 M XpXq 4 F (7o)
N + vn/ n - L npq p Aq + n . Vg,
Pq

in equation (1b), the pressure field has been eliminated by using the incompres-

sibility condition. The detailed.specification of the Mn

|
We note here a selection rule they satisfy assuring cpnservation

is not needed for
what follows.

of energy:
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npq pnq gnp *

We take anq to be symmetric in the last two indices, and put M= 0 if any two
indices are equal. This last condition means that the k = § amplitude of the

velocity field vanishes. The driving force in (1) makes stationary turbulence
possible against the presence of viscous drain., These forces will be taken to

be negative dampings

B, Definition of the Probability Distribution Function

The probability distribution function, P(X,, Xz X ...|t) is defined
such that the probability that the phase of the system (}) will be found within
a volume (dX1 N an,...) around (X,, Xz, ... Xn ...) at time t is P dX,dX....

it satisfies an equation of continuity which is

wnhere

and
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For a derivation of equation (3), see reference 1.

Some definitions will now be made which prove useful in what {oliows.

First define the one mode distributions by the equation

AR}
Pn(xn) =j'do(n) B (X1, X2 o0 X 00l) (L)
where
do(n) R = dx‘aa. dxn dxn o e .

Next define the one mode projection of an operator A(Xi, a/axj) as

.

Ay = ) (&) (5)
L n

with

(a)_ = an AP, (X)) .

. n (n) RS B

An operator A will be called a ''one mode operator' if it satisiies
the eqguation

(A) = A (&)
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111. SELF CONSISTENT FI1ELD APPROXIMATION

A. Description of the Perturbation Method and lts Results /

We shall be interested only in the statistically steady solutions of (3)

Lo P

VP . (3a

To gain an understanding of the method, consider first the case in which V=0.
Then the solution for P is a product of single mode distribution Pn' 1£ V#£G3,

P does not have the product form but can still be written as
! oy
P= TP +R, 7
a

where the Pn are the exact single mode distributions. The remainder term, R,
contains all the multi-mode correlations induced by the turbulent interactioa V.
Note that the integral of R over dﬂ(n) must venish, and consequently R makes no
contribution to the single mode distributions. The perturbation method then

consists in obtaining an expansion of R about V = 0.

To facilitate the quantitative development of such an expansion, it is

useful to introduce an operator [, having the following properties :

L=Lg = (& &aj

J‘.gn F(xn) dX_ =0,

—
o)
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N

for any well-behaved F.



Equation (8a) asserts that £ is & single mode operator, and (8b) will assure
the -conservation ©f probability.in what follows. In addition to £ it proves

e
useful to introduce one mode functions Py which satisfy

where P£ = T P .
v n n

Note that the properties préscribed by (8) for £ are also possessed

by fo, Hence it is consistent to require that £ — Lo and P£ - P as

N - o0.
Now introduce £ into (3a) to obtain
L= (£-L0+V)P- Sy

The formal solution to (§) may be written as
14

r .

p=pfip ¥ . (13
The first term in (10) is the solution to the homogenuous system (8c).
The ‘term R£ is evaluated in section (IIIb), It depends on £, f£o and V

as well as the P: .



The program for the perturbation method may now be given more
quontitative form. First, find an operator £ which satisfies conditions
(8) pY = P . Once this has b i dr '

\8) such that Py ¥ ¥,- Unce t is has been done, the second term in
(10), R£ , 1s identical to the remainder R in (7), s0 that R is now
known in terms of £ and V. The final Step,.yielﬂiné the perturtabion

series is to expand R about V = 0,

The results of the perturbation method for £ and P are as follows:

1 1007
£ = - (V= V) - (Vi ViVt V
Lo - ( 3 ) (f 5 )

+ (v%(v%v)% V) + (v% v%(v%.v»

& ) S G-y
L1 Loqr, "o\ pY
= . = + AV RV (VN 2
P=P +5VP +3{VpV- g
1fvlyly 1 1o 1 TS
= V=Va-V=z(VzV) -(VzV) =VrP
VeV sVE - gV B
+ e ’ (-A‘\C>'



- -9 -

The operator 1/f in (11a) and (11c) is the inverse to 'the non-singular part of [.

Its definition is given by (14).

Equations (11a) and (11b) constitute a pair of equations for the joint deter-

mination of £ and Pn. The one-mode projections in (11a) are integrals over P_ so

that (17a) and (11b) are coupled together in a self-consistent manner. Once £

n

\

and Pn are determined, P is to be found from (11c). With regard to (iic), note
that terms of order higher than pt make no contribution to the single mode Pn

On taking the one more average, terms odd in V vanish by symmetry, while the

terms of any even order in V cancel amongst themselves.

The term 'order of perturbation' is used here to denote the explicit number
of V-operators occuring on the right hand side of (1ia) and (1ib). Truncation of
the perturbation series at any finite order actually retains infinite powers of

V because of the nonlinearity of (1ia).

The equations for the intensities @n = in P dX, may be obtained from equa-

1

tions (1ia) and (1ib). To second order these are

(v - v') ¢ =20 Minpqg 2p%
a n n L Pq -

Tin+Tp+Tq

Dne,

where

M %
42 npq Man Tp+1q

KY

{52b)




Heve T may be interpreted as a relaxation frequency of the mode n. I measurcs
n :

trhe rate ol decay, due to the Jjoint action of viscosity and turbulence, of a .mall

rerturvation of a mode amplitude. Thus, l/ﬂnpq and l/ﬂpq are effective relaxation

tirmes for dynamically induced correlations to disappear. e

The derivations of equations (11) and (12) follow in section (I1Ib) and (Illc)

at

. . 7
respectively. The relation of the present method to those of krexchnan~»;;/

L]

s S . . .
and LdwardsV . are discussed in section IV, which may be read without going

tharough the derivation,

B. Derivation of the Perturbation Method.

: ) . . C e L
Our immediate goal is to find an operator £ satisfying (8) such that 2 = Pq.

i

To this end, rewrite (9) as

where

Equation (13) is an integral equation for P. Tie first term is the solution to
the homogeneous equation (8c). The second term needs some comment since the
Green's operator 1/f has not yet been defined. Some caution is necessary in its
definition in view of the fact that £ has zero as one of its eigenvalues as is
implied by (8e).

Let the eigenvalues of £ be denoted by li’ and the corresponding eigeniunc-
tions by Yi. Note that (8¢) implies that one of the xi, N,> say, is zero and
that the associate eigenfunction is P£. The eigenfunction Yo together with the
adjoint function ?} are assumed to form biorthonormal set in terms of which any

integrable function f(X; ... X, ,..) may be expanded:



Y

- 11 -

\
E(XI XZ '.,. xn -no) = %Cn Yn (xl X Xn ooc)
s
where
c = (¥,6)=fat¥ .

Here ?; are eigenfunctions of the operstor adjoint to &£, Now define

-

£"' by the equation

3-‘ €=2 %n (.‘?nv f) Yno
n#1

for any function f£. Using equation (14), it may be verified directly

that P as given by (13) satisfies {9) provided that

(¥:, (£ - So + V) P) =0,

which is a consistency condition that (9) has a nontrivial solution in

the form specified by (13). In the next section it is shown that xn

has the general form

d
L =7 A
n axn n’
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where A is a nonsingular operator (see equation (20)). From this, one

may show that ﬁh = 1, and hence the consistency condition is fulfilled.

. ; £, .
We now return to the construction of an equation for L. "Ffirs:, it

is convenient to solve (13) formally by iterating the right hand side.

There results:

where

1
T=(L£-%+V)+(£-25+V) T .

Now require that Pf be equal to ?n' From (15), it follows that

a sufficient condition that this be so is

~~
o
]
~
g
[ <)
[
Y
o~
~
b
ta
o

Here, the superscripts J-specify that the one mode projectors are with
{* N
respect to the function P*, The first equality in (16) is obtained by

.expanding the denominator in the {ollowing Taylor Series:




*r
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The second term here vanishes, by-(8b) since each term contains factors

of the form
L F dX = 0.
f qQ q q

Equation (16) may be rewritten in a more convenient form by using (15),

and the fact that Pn = P: . The result is

' [y) l £_ [P
{in'.f,n'i' (V/ET)n}Pn—O. \-7/

The operator £ is to be chosen consistent iwith (8a), (8b), (8¢c) and (17).
This is achieved by requiring the operator in (17) to vanish, and

keeping equation Bc ) as an independent' constraint:

£ =50 - (VAT *
n n <
(18)
i
L P£=0 .
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The superscript [ has been dropped in (18) as it is now superfluous,
The above choice of [ automatically satisfies (8c) since (18) is of

the form

)
& = ox_ Ao
n
as may be verified from the definitions of {4, V, &and the single mode

projector ()n.

- The perturbation series for £ - £,, in terms of V E V may be
found in the following way. Introduce the formal solution of T into

(18) to obtain .

_ 3 i '
b=z TToaw ATV

1) 1o

where

A—

|
ta

'
a3

o

Solve this equation for A by iteration, using A = 0 to initialize the
right hand side. Then expand the denominator and collect equal powers

of V é V. The result is (17a). Finally the perturbation series f{or

P (equation 11c) is obtained by introducing (11a) into (15), expanding

o~

T and coalessing equal powers of V.

f
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To assess the meaning of the perturbation series, first note that by
requiring (T) to vanish, an expansion has been achieved in which the zeroth
order term is a product of the exact single mode distribution fupctions. Higher
order terms represent progressively more complicated multimode correlations.

The contribution of any order (N > 0) to the single mode Pn vanishes inde-

pendent of any other order of perturbation.

We remark here, parenthetically, that equations (12) are analogous to

tormulas for the single particle potential in the quantum many body theory.

1

.- 5
The term (V £ ' T) is the analogue of the optical pOtentiﬂf¢<



C. Derivation of the Sccond Order Perturbation Solution

Intensities _and Relaxation Frequencies.

To second order { is given by /

This procedure extends the approximation method to the next higher order

beyond the Hartree self-consistency requirement. Such a procedure

assumes, according to ( 11c) that deviations of P from P£ are adequately

represented by terms linear in the operator V,

Equation (19), may be expanded as

. N . dX_ dX 3
£ =20 -2) M = ixx S XXPP —
n n L npg oX_ v pq i +L +L Pqpq ok
P.q n n"pq n
prqu
AN : Q. r a
- M M X X —_— XPP?
ﬁL npq png axn v Ppgq £n+£P+£q BXP qnpgq

P»q

In deriving (20), (8b) has been used to reduce the denominators from

sums over all modes to sums over the triad n, p and q. Also the

symmetry condition on M has also been used. An equation for the

intensities ¢n may now be obtained from the condition
i

[ ]
’

(“9)

(23



Using (20) there results after some partial integrations

(v =v')o¢ =2 2 2 o. ¢
n n’ "n n
oTa ﬂnpq P4 "P 'S
+ LS 1
L M M A A

pia Thpqg MPA PQ N q

where
qudX dx 3
] . ] rj? XXX : —— XX PPP .
= A npgq L4 FL ek pgnpg
nnpq ®p¢q vde np Tq n

The 7| are relaxation frequencies describing the joint relaxation oi

the modes n, p and q by the action of turbulence and viscosity. These

must be evaluated to make the determination of b complete. To this end

consider the integrsal

r
In = J annFn(Xn) dxn’

N

-t

~
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where F is an arbitrary function of Xn which vanishes sufficiently

rapidly to make I finite. Using (20) there results

r e ’ .
] XL F. (xn) X = - T i ancxn) dx_ (22,
< )
where Tn=v - v -4y M M S
n n &~ npq pnq Tpq
. . dX dx
. r P q
and = L T J‘x X e P
npq ¢ Jdwvivpgq £p+£q X qapgq

Equation (22) is obtained from (20) by partial integration, and by noting

that,for any well behaved function Gn(Xn)

¢ 1 o S, ‘
AN RS Gn(xn) = R (f G (X)) aX, J (23)

. Y _ - /
since ] fdxn L Gn (xn) =0 if r # 0, from (8¢),

Now put

F(X ) = .c: ¢ (x)

n

into (22) and define
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= (X £6 ax
Qn - J n£n n 9 n e
Vs
There results:
(P+1) (P)
A =T 4

or

QF = - (-1)F ol

n

Using (24), and may now be evaluated by expanding the denomina-
g (24), Tipq ™Y e y exp 8

tion in Taylor series. There results

dX dX .
1 1 o o)
L s~ %2R
1
bqg %Y P AT ; p 4Pd
P q
X = . L B 3P
1 f p i a7 -
= — X X 21( X P dX X
I— vwNI . 949 q3d
¢q L P s=0 P P
. ] P
] “
= X dX
= - X .
P zp ﬂq 3 p P

After some further steps there results

Tpq = Tp + Tg,

—~
N
~
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and “similarly

nnpq = ﬂn + “p + ﬂq .

Using the above results for the T's in (21) gives (12a) and (12b) for

[e4
o
.

o and T% .



IV, COMPARLSON OF PRESENT METHOD TO THAT OF EDWARDS

The present work is related to the direct interaction approximation of
2.3 ; /

Kraichnan\_~, and the generalized random phase approximation of Edwards\/,
As stated in the introduction, our results are identical to a simplification of
the direct interaction equations in which the response and correlation f{unctions
are approximated by exponential functions and the response and correlation
times are assumed to be equal. The generalized random phase approximation
gives results idential to (12), except that the denominator Tp + %q (in 12b)
is replaced by ﬂn + ﬂp + ﬂq. 1t is of interest, to seek the reason for this
difference. We first give a brief outline of Edward's approach.

Edwards assumes that the single mode equation is well approximated by a

.

Fokker-Planck equation

where
(F) a o
= - K
L X (nnx“ Pk
n n
’ 1 2
P (F) = =T e -X n/2®n,

[
N}
A
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and

Here, ﬂn is a dynamical friction coefficient and Kn an eddy diffusion
coefficient. Their evaluation is made through an examination of the
exact form of the full probability distribution P. For the latter,
Edwards introduces a perturbation expansion. The equation for P is

written in the form

(l(F) - AV +? (Lo - £(F)) 2=0.

Here, A is an ordering parameter which is put equal to unity at the

end of the calculation. A solution for P is sought in the form

[ -]

p =2 \F pir)

(r)

and the P are found to be

P(O) =T P (F) (X ) = P(F)
3 J bl
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p(2) =i;{v%;v - (s -.cf)}pm
. . . ' (2(')

The intensity normalization on Pn is

2 -
I X n Pn dxn =%,

and the same normalization is imposed by Edwards on Pn‘F). Therefore,

(r)

contributions to ¢n.£r0m P for v > O must vanish. ‘Thus for any order

of approximation” N it is required that:

f— I an Pn<r) an =0,

r=1

The NID order approximations for Kn and nn are to be chosen so as
to conform to (27). Edwards obtains explicit results only for the
second order approximation and the remainder of the present discussion
is confined to this order. One more condition in addition to (27) is
necessary to make determinate equations. The additional condition is
imposed on Kn' It is required that Kn have the form which would be
appropriate for describing the action of the turbulent force T M__ X xq

npg p

on the mode Xn if this force were completely Gaussian.
L

—~

-~
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To second order ﬂn and Kn are chosen according to

o _ . F _ 1 wWF (F)

n n

and

. 0@
xn=2_nzs__u ‘
nn + nP M nq

Equation (28a) is very similar to (19); the self-consistent field
method requires the operator itself to vanish, while (28a) requires
the product of the operator with Pn to vanish, Conditions (28) lead
to a choice of ﬂn and ¢n = Kn/'ﬂn very close to (12a) and (12b). The
only difference is that if (28) is used to obtain the intensities

¢, then the denominator ﬂp + nq in (12b) is replaced by o *+ Ty + nq.

We Are no& in a position to make a comparative assessment of the
two methods. First with regard to the generalized random phaseapproxi-
mation, it is to be noted that the choice of T_ and Kn prescribed by (28)
is not unique. In principle there are any number of Kan and Wh;s
satisfying (27) which may be used. The choice given by (28) is based
on the idea that the turbulent -force is close to Gaussian, and that the
Fokker-Planck equation is well suited to the description of thne stochas-

i

tic belavior of the amplitudes Xn. On the other hand, the method

-~
w

-~
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proposed in the present paper is unique, in the sense that no dynamical or
statistical assumptions are necessary in determining the form of the operator
L. The latter is entirely determined by the condition that the zeroth order
term iﬁ the perturbation series be the product exact single mode/distrihution.
The form of £ is not that of a:Fokker-Planck operator, as may be verified from
(20).

Another difference in the two methods appears in the roles played by the

\
one mode distribution Pn in the self-consistent field method, and Pn(F/ in

the generalized random phase method. In the latter, the Pn(F) serve as
approximations to the exact single mode distributions Pn,‘ The exact P, have
terms contained in higher orders of the perturbation series (26). On the
other hand, the present method employs the exact single mode distributions as

the leading term in the perturbation series and, consequently, no higher order

terms contribute to it.

In this connection, note also that in the generalized random phase

(F)

approximation the Pn are strictly Gaussian, whereas in the present method
the Pn are to be computed from the self-consistent set of equations, (11a)

and (17b). 1In deriving the second order results for Qn and ﬂn it was not
necessary to make any explicit use of the form of P, except for continuity and
symmetry properties. The calculation of the ?n by the self-consistent field
method, even to second order, seems to be a rather difficult task. However, in
the case in which the turbulence is spatially homogeneous such a calculation

is unnecessary, because in this case one may argue that P, is Gaussian. The

Gaussian form of Pn is a consequence of the fact that for homogeneous turbulence

the velocity fields in distant regions of space are statistically independent.

]
'

!
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The Fourier coefficients of the velocity field are effectively a sum of inde-
pendent random variables and, by the central limit theorem have Gaussian uni-
variaté distributions, The present method consistently allows t;e assumption
of Gaussian form to be used in evaluating £ to any finite order, and in a

subsequent calculation a determinationd the energy spectrum as described in

section 111 to be carried out.

The solution for P, has not been fully investigated. An interesting
question here {s whether in the case of homogeneous turbulence the Gaussian

form is preserved to finite orders of perturbation theory.
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